您的位置:首页 >百科知识 >

数学二元一次方程例题(二元一次方程例题)

大家好,我是小新,我来为大家解答以上问题。数学二元一次方程例题,二元一次方程例题很多人还不知道,现在让我们一起来看看吧!

主要分消元法和换元法,消元又分代入和加减.

代入消元法

(1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解.这种解方程组的方法叫做代入消元法,简称代入法.

(2)代入法解二元一次方程组的步骤

①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;

②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的.);

③解这个一元一次方程,求出未知数的值;

④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;

⑤用“{”联立两个未知数的值,就是方程组的解;

⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边).

例题:

{x-y=3 ①

{3x-8y=4②

由①得x=y+3③

③代入②得

3(y+3)-8y=4

y=1

把y=1带入③

得x=4

则:这个二元一次方程组的解

{x=4

{y=1

加减消元法

(1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.

(2)加减法解二元一次方程组的步骤

①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;

②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);

③解这个一元一次方程,求出未知数的值;

④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;

⑤用“{”联立两个未知数的值,就是方程组的解;

⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边).

如:

{5x+3y=9①

{10x+5y=12②

把①扩大2倍得到③

10x+6y=18

③-②得:

10x+6y-(10x+5y)=18-12

y=6

再把y=带入①.②或③中

解之得:{x=-1.8

{y=6

换元法

解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.

换元法又称辅助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来.或者变为熟悉的形式,把复杂的计算和推证简化.

它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用.

比如(x+y)/2-(x-y)/3=6

3(x+y)=4(x-y)

设x+y为a,x-y为b

原=a/2-b/3=

y=35

把y=35代入②得

x=-80

x=-80

是方程组的解

y=35

本文到此讲解完毕了,希望对大家有帮助。

免责声明:本文由用户上传,如有侵权请联系删除!